-
- WP-1 Méthodes et Instrumentations innovantes en radiothérapies
- WP-2 Techniques innovantes d'imagerie
- WP-3 Radiobiologie et modélisation pour les radiothérapies innovantes
- WP-4 Traitement d'images multidimensionnelles
- WP-5 Simulation et modélisation d'images
- Financement de la recherche
- Publications
- International
Vous êtes ici : Version française > Recherche > WP-3 Radiobiologie et modélisation pour les radiothérapies innov
-
Partager cette page
Chen-Hui CHAN 2016-2019 - Theoretical Modeling from Functionalized Gold Nanoparticles to Repair of Lesions in DNA for cancer radiotherapy
équipe LCh-ENS PhD director: Elise Dumont
Le potentiel des nanoparticules d'or (AuNPs) pour améliorer l’efficacité de la radiothérapie est démontré par de nombreuses études expérimentales in vivo et in vitro. Ces particules métalliques augmentent significativement l’effet de la radiosensibilisation. La réaction en jeu est la radiolyse de l’eau: une fois excitées par un rayon X, elles génèrent des espèces réactives oxygénées qui amplifient les dégâts d’ADN et mènent à une plus grande destruction des cellules cancéreuses. Cependant, pour une efficacité thérapeutique plus optimale, plusieurs propriétés des AuNPs doivent être prises en compte lors de la synthèse comme leur taille, leur forme et leur surface qui sont suspectibles d’influencer ses effets catalytiques dans l’environnement biologique (majoritairement de liquide d’eau). Ces aspects structuraux ne sont pas encore examinés dans l’état de l’art, ni expérimentalement ni théoriquement. Ce travail de thèse a pour but de rationaliser la stabilité de AuNPs dans un environnement chimique ou biologique avant l’irradiation par des outils de modélisation théorique. Dans un premier temps, nous nous sommes intéressés à la stabilité des AuNPs dans la gamme de 1- 3.4 nm. Nous étudions ensuite le comportement de ces nanoparticules dans un environnement biologique (hydratation) et chimique modèle (PEGylation), et la combinaison des deux environnements. Quand les nanoclusters de 0.9-1.8 nm sont en interaction avec une couche de molécules d’eau à saturation, nous avons montré qu’il y a une transformation de NPs métastables (dans le vide) telles que l'ino-décaèdre en NPs métastables plus favorables telles que l'icosaèdre. Alors qu’en présence d’une couche de ligands PEG, la liaison forte Au-S et les liaisons hydrogène entre les ligands entraînent une déformation significative de la morphologie de la nanoparticule, à savoir une stellation du décaèdre Au54. Par ailleurs, nous avons montré que les ligands PEG promeuvent le confinement de quelques molécules d’eau à proximité des AuNPs. Nos conclusions ouvrent des perspectives intéressantes pour la modélisation théorique de la radiolyse de l’eau. Parallèlement à ces études, nous nous sommes intéressés à la caractérisation de différents types de lésions d’ADN. Deux projets ont été menés: premièrement, nous démontrons l’interaction d’un peptide trilysine avec un oligonucléotide qui pourrait conduire à la formation de pontage d’ADN-polyamine. Ensuite, le deuxième projet porte sur la rationalisation de différents taux de réparation de dimères de cyclobutanemathide iochella pyrimidine en présence de l’enzyme de reconnaissance DDB2 à l’échelle atomique.
- Auteur(s)Chen-Hui CHAN
Téléchargements
- CHAN_Chen-Hui_2019LYSEN020_These.pdf (PDF, 48776 Ko)
- Résumé_these_Chan.pdf (PDF, 790 Ko)